Conservation of Energy Worksheet

Name \qquad

1) State the law of conservation of energy.
2) A 200-kg boulder is $1000-\mathrm{m}$ above the ground.
a) What is its potential energy when it is $1000-\mathrm{m}$ above the ground?
b) What is its kinetic energy when it is $1000-\mathrm{m}$ above the ground?
c) The boulder begins to fall. What is its potential energy when it is $500-\mathrm{m}$ above the ground? Where did the "lost" potential energy go?
d) What is the kinetic energy of the boulder when it has fallen $500-\mathrm{m}$?
e) What is the kinetic energy of the boulder just before it hits the ground?
3) A rollercoaster is designed as shown below. If the roller coaster starts at the top of the first hill from rest, describe what will happen to the rollercoaster. How could you fix this problem?

4) When you use a slingshot to fire a rock you stretch the rubber band storing potential energy. If you stretched the rubber band so that it had 100-J of potential energy,
a) with how much kinetic energy will the rock leave the slingshot?
b) with how much kinetic energy will the rock leave the slingshot if it loses 10-J to heat $\&$ sound?
5) A pendulum has 15-J of potential energy at the top of its swing.
a) What is its kinetic energy at the bottom of its swing?
b) At another time the pendulum has 8-J of potential energy. What is its kinetic energy?
c) For the pendulum in "b", what will its kinetic energy be if it loses 2-J to heat?
6) A 1-kg ball is 10-m above a table when it is dropped. It bounces to a height of 7-m.
a) How much energy is transferred to heat \& sound during the bounce?
b) Explain why this ball cannot bounce to a height of 12-m if it is dropped.
c) What could you do to make the ball bounce to a height of 12-m?
